ELEDIA@UniTN

ELEDIA Turns 20!
ELEDIA Turns 20! It was back in October-November 2000 that the ELEDIA brand began to circulate in an official form…
ELEDIA Artificial Intelligence Research Blog is online!
The ELEDIA Artificial Intelligence Research Blog (E-AIR Blog) has been launched! Check out our latest advancements on Artificial Intelligence as applied…
Dr. R. J. MAILLOUX awarded "Bruno Kessler" Honorary Professor
The ELEDIA Research Center is pleased to announce that Dr. Robert J. MAILLOUX will receive the title of Honorary Professor…
Radar and 5G Architectures and Systems
Category: Master Degree
Summary: 

The course is aimed to introduce the students to the basics of radar and 5G principles and to teach modern active architectures and systems focusing on electromagnetic functionalities and principal applications, also providing insights on the latest advances as well as envisaged evolutions of future radars and mobile communications.
The course is divided into six parts. The first two parts are devoted to present the general architecture of a radar system, the basic radar terminology, and the mathematical and physical description of the radar problem. The third part focuses on modern radar architectures, highlighting the relationships between radar requirements, system deployment, and design of the sensing layout. The fourth and fifth parts are aimed to discuss the principal functionalities of modern active radar systems and present a selection of electromagnetic radar applications. The last part is aimed at showing how the technologies and architectures typical of radar systems will be widely used in the new 5G mobile communications systems.
At the end of the course, the student is expected to become aware of the principles for external radar and 5G design (i.e., starting from the problem objectives and requirements/constraints specify the general architecture) and the internal design (i.e., starting from the general architecture specify the HW and SW implementations) and to acquire the knowledge for the study, analysis and design of modern and future radar and communications systems.


Topics: 4

Course Topics