ELEDIA Turns 20!
ELEDIA Turns 20! It was back in October-November 2000 that the ELEDIA brand began to circulate in an official form…
ELEDIA Artificial Intelligence Research Blog is online!
The ELEDIA Artificial Intelligence Research Blog (E-AIR Blog) has been launched! Check out our latest advancements on Artificial Intelligence as applied…
Dr. R. J. MAILLOUX awarded "Bruno Kessler" Honorary Professor
The ELEDIA Research Center is pleased to announce that Dr. Robert J. MAILLOUX will receive the title of Honorary Professor…


The design of microwave components for Electromagnetic Compatibility purposes (e.g., filters, splitters, combiners, circulators, etc.) is a challenging task because of the requirements that they must satisfy to fit industrial requirements. In such a context, EMI (ElectroMagnetic Interference) filters aimed at attenuating the signals interfering on the input/output connection ports of a device are among the most employed devices from the practical viewpoint. Unfortunately, despite the importance of such components at the industrial level, general purpose design algorithms able to effectively with multiple concurring objectives and constraints are still not available. Accordingly, efficient and effective methodologies enabling the fast design of arbitrary EMI filters are of great importance for advanced manufacturing and processing purposes in the Electromagnetic Compatibility industry.
Industrial Electromagnetic Compatibility


Example Of EMI Filter

ELEDIA Design Tool

Members of the ELEDIA Research Center have worked at the development of unsupervised design approaches for the synthesis of filters able to suppress the unwanted radio-disturbances as well as to satisfy the other design requirements, including

  1. insertion loss due to common mode and differential mode currents and voltages;
  2. input and output impedance;
  3. maximal leakage and self-power-consumption current.

The synthesis procedures exploit Evolutionary Algorithms in combination with circuit simulators and equivalent models of the used components. Particular importance is given to the ad-hoc design for specific problems, to the accurate performances prediction of the synthesized device, to the direct realization of the device starting from the results obtained during the synthesis procedure.


Keywords: Electromagnetic Compatibility

See Also
  • R. Azaro, L. Ioriatti, M. Martinelli, and A. Massa, "Automatic design and optimisation of EMI filter using commercially-available components," Electron. Lett. , vol. 43, no. 6, pp.15-16, March 2007
    doi: 10.1049/el:20073923